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1 Practical significance and interest of the test-case

This test-case could usually be considered as a very preliminary one for a new numerical
method. An extensive tester may want to reproduce most parts of the Clift, Grace and
Weber map (Clift et al. , 1978). However, this selected case deserves special attention
for the result not only consists in a final shape of the bubble (that is nevertheless a real
criteria of comparison) but also in a precise build-up of the bubble velocity, starting from
rest, exhibiting an overshoot before reaching its final asymptotic value.

To get the proper results, mainly the correct terminal velocity, and to reproduce the
overshoot, a numerical method has to take accurately into account buoyancy, viscous
stresses and surface tension effects. In particular, this test allows validating the numerical
model that takes care of jump conditions at the interface (see e.g. (Scardovelli & Zaleski,
1999)). However, the test is less severe than the ”Free rise of a liquid inclusion in a stagnant
liquid”, a test-case proposed by Lemonnier and Hervieu, presented in this volume.

2 Definitions and model description

The situation of the test-case is relative to a fluid inclusion rising in another fluid. The
inclusion and the surrounding fluid are initially at rest. Gravity induced buoyancy is the
only force inducing the motion. The test-case consists in the computation of the transient
build-up of the velocity of the rising inclusion that finally reaches a constant value.

The physical model is reduced to Navier-Stokes equation in both phases, a constant
surface tension at the interface. No phase-change takes place at the interface. As the
solution does not depend on a possible compressibility of one or both of the phases, the
test-case can be conducted in both cases (compressible / incompressible), depending on
specific features of the numerical method to be evaluated.

Reference calculations are available in non-dimensional units; however, a typical set of
dimensional physical parameter is suggested. The length scale of the problem is the initial
diameter de of the inclusion. The velocity scale for speed of displacement of the center of
mass U is,

Uc =
√
gde, (1)
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where g is the acceleration of the gravity. The time scale is therefore

tc =
√
de/g. (2)

Reduced parameters are τ = t/tc and u = U/Uc. According to these definitions, the
non-dimensional reference calculation consist in the reduced time evolution of the speed
of displacement of the center of mass:

u = U/Uc = f(τ) = f(t/tc). (3)

The computation can be conducted either for an axisymmetrical domain or in a true
three-dimensional domain. As the limited extend of the domain has an impact on the
terminal velocity of the inclusion (see e.g. Harmathy (1960)), the size of the computational
domain has to be increased as long as an effect on the results is noted. As a rough first
estimate, we suggest that that the computational domain has a minimal extend equal to
ten diameters in all directions. According to the work of Harmathy (1960), the shape of
the bubble is not affected by the domain extension whereas the terminal rising velocity
modification can be estimated through the semi-empirical relation

U confinedc

U∞c
≈ 1−

(
de
D

)2

, (4)

where D is a characteristic dimension of the domain in a plan perpendicular to the gravity
direction.

The physical parameters, namely ρL and ρV , respectively the density of the surround-
ing fluid and the fluid of the inclusion, µL and µV the dynamic viscosities and σ the surface
tension, are chosen to get proper values of the non-dimensional quantities for which ref-
erence computations are available: the Morton number Mo, the Bond number Bo and
the ratio of densities ρL/ρV and viscosities µL/µV . The Morton number and the Bond
number are defined as usually by,

Mo =
g µ4

L

ρL σ3
, (5)

and

Bo =
ρL g d

2
e

σ
. (6)

3 Summary of the requested calculations

• Compute the displacement of an inclusion with the following non-dimensional prop-
erties Mo = 0.056, Bo = 40, ρL/ρV = 100 and µL/µV = 100.

• As an example, we suggest the following physical properties: ρL = 1000 kg.m−3,
ρV = 10 kg.m−3, µL = 0.273556 Pa.s−1, µV = 0.00273556 Pa.s−1, σ = 0.1 N.m,
g = 10 kg.s−2, de = 0.02 m.

• Extract the position of the center of mass of the inclusion and then deduce its speed of
displacement. The first point of comparison is the value of the reduced asymptotic
velocity. This value can be obtained even with a peculiar point of the interface,
such as the apex. Of course, in this later case, the temporal evolution around the
overshoot (Figure 1) cannot be capture.
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Figure 1: Reduced time evolution of the speed of displacement for two mesh sizes. After a figure of
Blanco-Alvarez (1995).

 

Figure 2: Recirculation zone and steam lines at reduced time τ = 2.86. After a figure of Benkenida
(1999).
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• In addition to the main result, additional features consist in comparisons of the
non-dimensional values of the over-shoot in the build-up of velocity (Figure 1).

• Further comparisons are the shape of lines of current, the equilibrium shape of the
inclusion and the size of the recirculation zone (Figure 2). This late characteristic
requires that the inclusion has risen a length of more than ten diameters (Hnat &
Buckmaster, 1976).
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