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1 Practical significance and interest of the test-case

Analytical solutions are provided here, developed for standing small-amplitude water
waves. It provides a basis for applications to a series of numerical experiments. The
interest consists here in predicting accurately the evolution of the interface of capillary
waves in order to evaluate the coupling between inertial and viscous effects and estimating
the effect of the numerical viscosity.

When simulating two-phase flows, it is important to evaluate the general accuracy and
the validity of the numerical methods and numerical schemes used and the conservation
laws of mass and energy in the computing domain. In particular, it is important to check
that the behavior of the interface between two media is well taken into account, considering
surface tension and viscous effects. As a matter of fact, capillary waves are similar to
gravity waves but, firstly, they involve smaller scales, both in length and time. Secondly,
They require a more difficult computation, because surface tension forces are based on the
interface curvature, which needs to be accurately described. Thus, the results provided for
pure capillary waves are considered, as initial conditions to simulate their propagations
in constant depths over horizontal beds. The precision of the simulation is checked by
comparing the free-surface shapes to theoretical values, including the predicted decay rate
due to viscous effects.

2 Definitions and model description

The important parameters to describe waves are their length and height, and the water
depth d over which they are propagating. The length of the wave, L, is the horizontal
distance between two successive wave crests or two successive wave troughs. H is the
height between the trough and the crest of the wave. The wave period, T , is the time
required for two successive crests or troughs to pass a particular point. The speed of the
wave, called the celerity c, is then defined as c = L/T . The water surface elevation η is
the distance between the water surface and the mean water depth h.

Let us consider a standing small-amplitude wave with water surface displacement given
by:

η(x, t) =
H

2
cos(kx) cos(ωt), (1)

with ω = 2π/T being the angular frequency of the wave, calculated from the dispersion
relationship, ω2 = gk tanh(kd), and k = 2π/L being the wave number. At t = 0, the
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water wave has a cosine shape, as shown in figure 1.

This is known as the linear wave theory, developed under the following assumptions.
The fluid is supposed to be homogeneous and incompressible (density is constant), ideal
or inviscid (lacks viscosity), the wave form is invariant in time and space (except its ampli-
tude), the waves are two-dimensional and the sea bed is an horizontal, fixed, impermeable
boundary which implies that the vertical velocity at the sea bed is zero. The restriction
to small-amplitude implies that the ratio of the maximum elevation to the wavelength
H/L << 1.

a0=H/2

L

d

µg, ρg

µl, ρl

Figure 1: Initial conditions for the free-surface shape η(x, 0).

Depending on the relative depth kd over which the waves are propagating, the water
particle displacements are different. In shallow water (d/L < 1/20 or kd < π/10) and
intermediate depth (1/20 < d/L < 1/2 or π/10 < kd < π/2), the water particle trajectory
is an ellipse. In deep water (d/L > 1/2 or kd > π/2), the trajectories are circles decaying
exponentially with depth.

According to the theoretical prediction for small-amplitude capillary waves (Lamb,
1932)[sec. 266], a generalized analytical value of the frequency ωth, for finite depth, is
given by:

ω2
th =

σk3

ρl + ρg
tanh(kd), (2)

with σ being the constant surface tension, ρl and ρg being the densities.

Moreover, in the case where ν = νl = νg is the kinematic viscosity of both fluids, an
analytical solution has developed by Prosperetti (1981) to calculate the evolution of the
amplitude of a capillary wave. This solution takes into account the effects of the viscosity
and the initial condition. In addition to the analytical value of ωth (2), a dimensionless
viscosity ε is defined:

ε =
νk2

ωth
(3)
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Prosperetti (1981) gives the solution for the shape of the interface:

η(x, t)
η(x, 0)

= a(t), (4)

with a(t) being the amplitude of the considered capillary wave. This amplitude is expressed
as:

a(τ)
a0

=
4(1− 4β)ε2

8(1− 4β)ε2 + 1
erfc(
√
ετ)

+
4∑
i=1

zi
Zi

ωth
zi2 − εωth

exp
(

(zi2 − εωth)
τ

ωth

)
erfc

(
zi

√
τ

ωth

)
,

(5)

with τ = ωtht, and erfc being the complementary error function. zi are solutions of the
following equation:

z4 − 4β(εωth)
1
2 (z3 + 2(1− 6β)(εωth)z2

+4(1− 3β)(εωth)
3
2 z + (1− 4β)(εωth)2 + ωth

2 = 0,
(6)

The coefficient Z1 is given by Z1 = (z2−z1)(z3−z1)(z4−z1), and the other coefficients
Z2, Z3 and Z4 are obtained by circular permutation of the subscripts. The parameter β
is defined as:

β =
ρlρg

(ρl + ρg)2
, (7)

In the case where νl and νg are being chosen with different values, the analytical
solution (5) is no longer valid.

3 A series of test-cases

It is proposed to evaluate the numerical diffusion by simulating pure capillary waves
(g = 0) propagating on the interface between two viscous fluids in a two-dimensional
domain of length equal to the wavelength L, and to compare the numerical results with
the analytical solutions developed previously.

The proposed numerical configuration is to consider an initial wave computed from the
theory detailed before. The crest is located on both sides of the numerical domain (x = 0
and x = L, as shown in figure 1, symmetry boundary conditions being imposed on the
lateral boundaries. Thus, at the instant t = 0, for 0 < x < L, we have (Lamb, 1932)[sec.
250]:

η(x, 0) = a0 cos(kx), (8)

with a0 being the amplitude of the wave a0 = H
2 . There is no initial velocity, the fluid

being at rest.
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Non-viscous case

In the case of two fluids which viscosities are negligible (ν = νl = νg = 0), capillary
waves should not be damped and should oscillate with a constant frequency (2). It is so
proposed to evaluate the variation of the ratio ωnum over ωth as a function of the mesh
size. The computation should then converge to this value of the frequency. However, the
limit values obtained numerically will not be exactly equal to the theoretical ones: the
effect of a numerical diffusion will then be highlighted.

As we are in the case where ν = νl = νg, the amplitude of the oscillations a(t) should
also be plotted as a function of time and should be compared with the analytical solution
given in (5). Duquennoy (2000) proposed the following parameters:

• d/L = 0.5, H/L = 1, a/L = 2.7 .10−2;

• ρl/ρg = 1, νl/νg = 1, with kνg/ωtha(t) << 1 and kνl/ωtha(t) << 1;

• σ = 3.704 .10−7 N.m−1.

Tests should be done with k = π/L, 2π/L and 4π/L, with different mesh size. The
accuracy of the results can be estimated by calculating the mean and strandard deviation
between the numerical and analytical results.

Viscous case

In the contrary, when the viscosities are non-negligible and defined by µl, µg, the
evolution of the interface at position x = 0 should be displayed and compared with the
expected decay rate γ due to viscous effect (Lamb, 1932)[sec. 348]:

γ = 2νlk2 (9)

This has been developed to estimate the effect of viscosity on free oscillatory waves
on deep water by evaluating the energy dissipation, so it can provide a good approxi-
mation of damping since simulated waves are propagating in depths more than half the
wavelength. The time evolution of the interface at position x = 0 should be plotted, as
a function of time, compared to the predicted viscous envelope, η(0, 0) exp(−γt). The
decay in time of the capillary wave should then be reproduced by the numerical simulation.

If we are in the case where ν = νl = νg, the evolution of the amplitude a(t) of the
oscillations, given analytically in (5), should be compared to the previous curves plotted
as a function of time.

Computations can be done with ωth = 6.778, ε = 6.472 .10−2, ρl/ρg = 1, νl/νg = 1,
and k = 4π/L (Popinet & Zaleski, 1999). The accuracy of the results can be estimated
by calculating the mean and strandard deviation between the numerical and analytical
results, as a function of the mesh size.

Summary of the required calculations for propagations of capillary waves

Simulations are to be performed with different values of the wave number
k = π/L, 2π/L and 4π/L. It is also required to check the conservation of mass
during the simulations.
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• In the case where ν = νl = νg and

– νl and νg are negligible first;

– νl and νg are then not negligible,

the amplitude of the oscillations a(t) should be plotted as a function of time and
should be compared with the analytical solution (5) and the predicted viscous en-
velope η(0, 0) exp(−γt) (9). The ratio

ωnum
ωth

should be checked as a function of the

mesh size.

• In the case where νl 6= νg and

– νl and νg are negligible first;

– νl and νg are then not negligible,

the amplitude of the oscillations a(t) should be plotted as a function of time and
should be compared with η(0, 0) exp(−γt), γ being evaluated from (9). The ratio
ωnum
ωth

should be checked as a function of the mesh size.
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l’ébullition en paroi. Ph.D. thesis, Institut National Polytechnique de Toulouse.

Lamb, H. 1932. Hydrodynamics. 6th edn. Cambridge University Press.

Popinet, P., & Zaleski, S. 1999. A front tracking algorithm for the accurate representation
of surface tension. Int. J. Numer. Meth. Fluids, 30, 775–793.

Prosperetti, A. 1981. Motion of two superposed viscous fluids. Physics of Fluids, 24,
1217–1223.


	Practical significance and interest of the test-case
	Definitions and model description
	A series of test-cases
	References

