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1 Practical significance and interest of the test-case

An analytical solution of a one-dimensional isothermal liquid-vapor phase-change problem
is provided. In models dedicated to the description of multiphase flows, an important
part is the modeling of the interfaces which separate the phases of the system. The
equations of motion of the interfaces consist in balance equations (mass, momentum,
energy and entropy) and closure relations. However, in general, these equations of motion
are simplified by assuming some sort of equilibrium. For instance, it is generally assumed
that the Laplace relation, which relates the pressure of the bulk phases to the curvature
of the interface at equilibrium, is satisfied locally all along the interfaces. In this case,
the general momentum balance equation at the interface is simplified by assuming local
equilibrium at the interface.

If the system under consideration is a two-phase system made of liquid and vapor
phases of a pure substance, phase-change might occur at an interface. This phase-
change (evaporation or condensation) corresponds to a reaction of the system placed in a
non-equilibrium state to recover an equilibrium state. For instance, let us consider a liquid-
vapor system for which the pressure is assumed to be constant and uniform and let us
heat up the vapor phase. Due to thermal conduction in the vapor phase, the temperature
will increase, in particular at the interface. If local thermodynamic equilibrium is assumed
at the interface, the temperature of the interface must remain constant and equal to the
saturation temperature corresponding to the imposed pressure. To keep the interface at a
constant temperature (i.e. at local thermodynamic equilibrium), evaporation occurs: the
latent heat absorbed during evaporation prevents the interface temperature from rising up.

The local thermodynamic equilibrium condition is generally imposed in terms of the
interface temperature as described above. However, the relation Ti = T sat(Pi)1, where
Ti is the local interface temperature, Pi is the local interface pressure and T sat is the
corresponding saturation temperature, can be inverted: Pi = P sat(Ti), where P sat is the
saturation pressure. Even though these two conditions are equivalent, they correspond
to very different situations: in the first case, it is assumed that the pressure is imposed
and that phase-change is mainly driven by thermal effects, whereas in the second case, it
is assumed that the temperature is imposed and that phase-change is mainly driven by
dynamic or pressure effects.

Such a situation corresponds to the physical system sketched in figure 1: different
velocities are imposed to the liquid and vapor phases, which creates a pressure gradient
within the bulk phases, which tends to let the interface pressure be different from the
saturation pressure, which then triggers phase-change.

The present test-case gives an analytical solution of a problem for which phase-change
is driven by dynamic effects and not by thermal effects. This solution might be used to
test the capability of a numerical method to simulate liquid-vapor phase-change due to
dynamic effects and not thermal effects.

1Curvature effects are neglected here for the sake of simplicity.
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Figure 1: Sketch of a one-dimensional isothermal phase-change problem.

2 Definitions and model description

Let us consider a liquid-vapor system of a pure substance. The system is assumed to be
one-dimensional and the interface to be flat ; therefore only the direction normal to the
interface, say z, is relevant. The system is also assumed to be isothermal. Physically,
this means that the thermal conductivity is very large and that energy is supplied by
thermal conduction where needed (mainly at the interface) instantly. No volumetric force
is applied to the system. The equations of motion of the system are the following.

• Within the bulk phases

∂ρ

∂t
+
∂(ρV )
∂z

= 0 (1)

∂(ρV )
∂t

+
∂(ρV 2)
∂z

= −∂P
∂z

+
∂

∂z

(
4
3
µ
∂V

∂z

)
(2)

where ρ is the density, V is the velocity, P is the pressure and µ is the dynamic
viscosity.

Note that, if the bulk phases are assumed to be incompressible, which is a
fair approximation as long as the velocity is small compared to the sound speed,
the system (1)-(2) reads

∂V

∂z
= 0 (3)

ρ

(
∂V

∂t
+ V

∂V
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)
= −∂P

∂z
(4)

• At the interface (superscript i)

ρiv
(
V i
v − V i

)
= ρil

(
V i
l − V i

)
(5)
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ṁi
)2
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P iv = P sat −
(
ṁi
)2

2

(
1
ρiv
− 1
ρil

)
(7)

where V i is the speed of displacement of the interface and ṁi is the mass flux across
the interface, which is defined by

ṁi = ρiv
(
V i
v − V i

)
= ρil

(
V i
l − V i

)
(8)

The subscripts v and l represent the vapor and liquid phases respectively.
Equations (6) and (7) correspond to the local thermodynamic condition at the in-
terface (e.g. Ishii, 1975, p. 39 and Jamet et al. , 2001, p. 636). Note that the terms
in
(
ṁi
)2 correspond to the effect of the kinetic energy.

• The boundary conditions are the following:

ρV (z = 0, t) = ṁl (9)

ρV (z = L, t) = ṁv (10)

∂V

∂z
(z = 0, t) = 0 (11)

∂V

∂z
(z = L, t) = 0 (12)

where L is the length of the system and ṁl and ṁv are two different constants which
represent respectively the liquid mass flux entering the system and the vapor mass
flux exiting the system. Figure 1 corresponds to the case ṁl = 0 and ṁv > 0.
Note that the boundary conditions (11) and (12) are necessary only if the bulk phases
are compressible.

2.1 Incompressible model

As a first approximation, let us consider the incompressible model. In this case, the
density is uniform within each bulk phase by definition of the incompressibility, and it is
straightforward to show that the velocity and the pressure are also uniform within each
bulk phase. The value of the bulk velocities depends on the imposed mass fluxes on the
system boundaries (9) and (10). The value of the bulk pressures is determined by the
interface local equilibrium conditions (6) and (7). For general boundary conditions ṁl

and ṁv, one gets:

Vl =
ṁl

ρl
(13)

Vv =
ṁv

ρv
(14)

Pl = P sat +
ρl ρv

2 (ρl − ρv)
(Vv − Vl)2 (15)
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Pv = P sat − ρl ρv
2 (ρl − ρv)

(Vv − Vl)2 (16)

The speed of displacement of the interface V i and the interfacial mass flux ṁi are
given by

V i =
ṁl − ṁv

ρl − ρv
(17)

ṁi =
ρl ṁv − ρv ṁl

ρl − ρv
(18)

Equation (17) shows that the speed of displacement of the interface is constant, which
implies that, in the frame of reference linked to the interface, the problem is stationary.

Equation (18) shows that the interfacial mass flux ṁi is constant and that its
value depends only on the dynamic boundary conditions imposed through ṁv and ṁl

and not on any thermal effect since the temperature is assumed to be constant and uniform.

It is worth noting that the value of the pressure within the bulk phases depend on the
condition of local thermodynamic equilibrium at the interface as shown by equations (15)
and (17).

2.2 Inviscid compressible model

We showed in the previous section that, when the bulk phases are incompressible, the
interface moves at a constant speed and that the problem is therefore stationary in the
framework linked to the interface. Let us therefore consider this framework and assume
that the flow in the bulk phases is stationary. For the sake of simplicity, the bulk phases
are assumed to be inviscid. The equations of motion (1)-(2) read

∂(ρV )
∂z

= 0

∂(ρV 2)
∂z

= −∂P
∂z

The constants which appear after integration are determined using the conditions (5),
(6), (7), (9) and (10). One gets

(ρV )l (z) = ṁl (19)

(ρV )v (z) = ṁv (20)

(
P + ρV 2

)
l
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1
2
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i
v
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(
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v
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l

)2 (21)

(
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(
V i
v

)2 (22)
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In equations (19)-(22), the densities and the velocities of the liquid and vapor phases
at the interface are unknown. Since the bulk phases are compressible, the densities ρil and
ρiv are solution of the following system of equations

Pl(ρil) + ρil
(
V i
l

)2 = P sat +
1
2

ρil ρ
i
v

ρil − ρiv

(
V i
l − V i

v

)2 + ρil
(
V i
l

)2 (23)

Pv(ρiv) + ρiv
(
V i
v

)2 = P sat − 1
2

ρil ρ
i
v

ρil − ρiv

(
V i
l − V i

v

)2 + ρiv
(
V i
v

)2 (24)

in which the velocities V i
l and V i

v are expressed by

V i
l =

ṁl

ρil
(25)

V i
v =

ṁv

ρiv
(26)

It is straightforward to show that the expressions for the speed of displacement of the
interface and the interfacial mass flux are the following

V i =
ṁl − ṁv

ρil − ρiv
(27)

ṁi =
ρil ṁv − ρiv ṁl

ρil − ρiv
(28)

2.3 Physical relevance of an isothermal phase-change problem

The physical situation sketched in figure 1 corresponds to a situation in which the liquid-
vapor phase-change is imposed through a dynamic effect and not through a thermal effect.
However, the fact that phase-change can occur at a constant temperature is less intuitive.
Indeed, interfacial mass transfer is possible only if sufficient energy is provided at the
interface, since the interfacial energy balance equation reads

qil − qiv = ṁi L

where q is the conductive heat flux and L is the latent heat of vaporization (in which
kinetic energy effects are taken into account).

Given this interfacial energy balance equation, the present model is such that any
energy needed at the interface for mass transfer is provided instantly. This corresponds
to infinite values of the bulk thermal conductivities in which case the conductive heat
fluxes can be finite with a zero temperature gradient. More precisely (see Jamet, 1998,
pp. 213-230), the conditions which must be satisfied are:

Pev � 1

Pel � 1
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βv
qv Lv
kv
� 1

βl
ql Ll
kl
� 1

where Pe is the Peclet number, β is the thermal expansion coefficient, L is a characteristic
length and k is the thermal conductivity. Note that, for finite thermal conductivities, these
conditions impose a limitation on the interfacial mass flux ṁi through the interfacial energy
balance equation.

3 Test-case description

In this section, we describe how the previous analytical results should be used as a
numerical test. The problem is one dimensional, the length L of the domain being large
enough so that a steady state in the framework linked to the interface can be achieved
during the simulation. The main physical parameters of the problem are the densities
of the bulk phases at saturation ρl and ρv. These parameters are the only ones for the
incompressible model and the equations of state of the phases Pl(ρl) and Pv(ρv) are two
other characteristics necessary for the compressible model. No restriction is imposed on
any of these physical characteristics but they should be provided. For the incompressible
model, viscosity does not play any role. For the compressible model, viscous effects
should be weak compared to inertial effects (see equation (2)). The boundary conditions
consist in imposing constant and in general different mass fluxes ṁl and ṁv on the liquid
and vapor boundaries.

The equations solved should be, in general, unsteady, which means that the interface
position should vary in time2. However, one should seek for a solution in which the speed
of displacement of the interface is constant. The initial conditions are not imposed in this
test-case; however, to decrease the unsteady stage of the computation (in terms of the
speed of displacement of the interface), it is recommended to use the analytical solution
given in section 2, namely equations (13)-(18) for an incompressible model and equations
(23)-(28) for a compressible model.

The main numerical results that should be compared to the analytical solution are

1. the speed of displacement of the interface as a function of time V i(t) which must
reach an asymptotic value given by equation (17) for an incompressible model and
equation (27) for a compressible model;

2. the bulk pressures Pl and Pv and in particular their values at the interface P il and
P iv which should also reach asymptotic values given by equations (15) and (16) for
an incompressible model and by equations (23) and (24) for a compressible model;

3. the interfacial mass flux ṁi;

4. the bulk velocities Vl and Vv and in particular their values at the interface V i
l and

V i
v .

2The only case for which the interface position is stationnary corresponds to the particular boundary
conditions ṁl = ṁv.
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It is recommended that the L1-norm of the error (difference between the numerical results
and the analytical results once the steady-state is reached) should be provided as a function
of the mesh size and for all the above physical quantities.
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