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Stéphane Vincent, TREFLE - UMR CNRS 8508, ENSCPB
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1 Practical significance and interest of the test-case

The assessment of the consistency of a numerical model is proposed by comparison to
theoretical results. The surface tension modeling is tested thanks to two analytical test
cases. The first problem consists in verifying the equilibrium of a cylindrical drop initially
at rest. The pressure in the drop is defined analytically (Laplace law). In the second test,
an initially square cylindrical drop is oscillating under surface tension forces. The viscous
damping of drop oscillations around a cylindrical shape is studied in order to reach a steady
cylindrical final state corresponding to the Laplace problem. The oscillation frequency is
known theoretically. The aim of the the two cases is to estimate the discretization error
on the curvature of a free surface leading to the generation of parasitic numerical currents.

• in the first test 10a, the non-conforming of the numerical free-surface shape with
the theoretical one induces local pressure variations in the drop. These pressure
gradients lead to local velocities and to the propagation of surface waves of small
amplitude. This spurious behavior is refereed to as parasitic currents.

• in the second test 10b, the oscillation frequency is well recovered by numerical meth-
ods with almost several percent error. However, the steady cylindrical state exhibits
parisitc currents as in the previous test.

2 Definitions and physical model description

Two-dimensional configurations are considered where a viscous liquid drop is initially
centered in a square cavity of characteristic length L, full of air. In test 10a, the radius
of the circular shape drop is R0 whereas l is the typical length scale of the square drop of
test 10b. A zero-gravity field is imposed, the flow is assumed isothermal and the surface
tension coefficient is constant. The tests can be easily extended to three dimensions.

With respect to the length scale of the problems, analytical results can be obtained on
the pressure and oscillation frequency:

• for test10.a, the droplet keeps a cylindrical (or spherical) shape during time such that
R(t) = R0 and the pressure jump between the inside and outside drop pressures pl
and pg is given by the Laplace equation

pl − pg =
2σ
R0

(3D case)

pl − pg =
σ

R0
(2D case)

(1)
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• for test 10.b, the initial square drop shape corresponds to a mode n = 2 perturbation.
We compare the initial square drop to a cylindrical drop of same volume, radius of
which is defined by

R1 =
(

3
4π

)1/3

l(3D case)

R1 = π−1/2l(2D case)

(2)

The oscillation period T0 can be estimated by

T0 =
2π
ω0

(3)

where

ω0 = (n3 − n)
σ

(ρl + ρg)R3
1

. (4)

This period remains constant during time. Only the magnitude of the oscillations
are diminishing under viscous effects to converge to a circular (or spherical) shape
of radius R1.

Numerical methods for front tracking or interface capturing are demonstrated to generate
artificial numerical flows instead of keeping steady cylindrical drops (or spherical shapes in
3D). Following the work of Lafaurie et al. (1994), the order of magnitude of the spurious
velocities up can be estimated according to the surface tension coefficient σ and dynamic
viscosity µ of the drop,

up = Cp
σ

µ
(5)

where Cp is a numerical constant characteristic of the quality of the numerical modeling
of surface tension forces (a non-dimensional number similar to a capillary number). The
optimal value of Cp is zero. Typical values of Cp are found between 10−3 and 10−10.

3 Test-case description

The fluid characteristics are ρl = 797.88 kg.m−3 and µl = 1.2 10−3 Pa.s for ethanol and
ρg = 1.1768 kg.m−3 and µg = 10−5 Pa.s for air. The surface tension coefficient between
ethanol and air is σ = 0.02361 N.m−1. Initially, the velocity field is zero in the whole
domain. Wall boundary conditions are considered in the two problems. The parasitic
currents are observed in numerical simulations whatever the grid type and size. For test
10.a, the geometrical parameters are

• R0 = 210−3 m

• L = 7.510−3 m

whereas for test 10.b, we choose

• l = 410−2 m

• L = 7.510−2 m
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R0/L 0.1 0.175 0.25 0.325 0.4
∆pR
σ

0.95 1.015 1.02 1.01 0.985

Theoretical value 1 1 1 1 1
R0/∆x 3 6 10 13 16 20
∆pR
σ

0.925 0.98 1.02 1.01 0.99 0.995

Theoretical value 1 1 1 1 1 1

Table 1: Two-dimensional VOF-PLIC simulation of Laplace equation. Convergence test according to
drop radius (top) and mesh size (bottom)

4 Example of comparison exercise

The Navier-Stokes equations in their single-fluid formulation for multiphase flows
presented by Vincent & Caltagirone (2000) are implemented on a fixed cartesian grids for
the two proposed problems. A Piecewise Linear Interface Construction of Youngs (1982)
associated to a Volume Of Fluid (VOF) function C is used to track the free surface and the
surface tensions are modeled thanks to the Continuum Surface Force (CSF) of Brackbill
et al. (1992). In addition, test case 10.a is computed with an Eulerian-Lagrangian
front-tracking method of Shin & Juric (2002) with the surface tension forces modeled by
using the Fresnet relation and Peskin approximation.

The table 1 and figure 1 relative to test 10.a show that the VOF-PLIC approach
induces the generation of spurious currents which disturb the convergence of the solution
towards the known equilibrium. On the contrary, the front tracking method gives a better
approximation of the Laplace equation on the same grid and reduces the velocities in
the drop. For the case presented on figure 1, Cp = 5 · 10−5 for the VOF-PLIC method
and Cp = 5 · 10−7 for the front tracking method, corresponding to up = 10−3 m.s−1 and
up = 10−5 m.s−1 respectively inside ethanol. The VOF-PLIC numerical simulation of
problem 10.b is presented on figure 2. The 0.4s period of drop oscillation presented by
Brackbill et al. (1992) is recovered. As in the previous reference simulations, spurious
currents are observed for long calculation times which prevent the drop from converging
to a cylindrical shape under viscous effects.
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Figure 1: Two-dimensional simulation of Laplace equation with VOF-PLIC (top) and front-tracking
(bottom) methods on a 30 x 30 grid. The pressure is plotted on the left whereas the velocity field and the
free surface are shown on the right. The reference pressure jump across interface given by equation (1) is
1 Pa.
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Figure 2: Simulation of square drop oscillation under surface tension force with VOF-PLIC and CSF
methods on a 30 x 30 grid. The velocity field and the free surface are plotted for t = 0, 0.05, 0.1, 0.2, 1 et
5 s (from left to right and from top to bottom). Figure at time t = 5 s emphasizes the presence of spurious
currents in a near equilibrium drop state.
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