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1 Practical significance and interest of the test case

This test case is concerned with the flow rate limitation of a free surface flow through an
open capillary channel consisting of two parallel plates. Due to convective and viscous
momentum transport the pressure along the flow path decreases and forces the free
surfaces to bend inwards. Since the free surfaces can only withstand a certain difference
between the liquid and ambient pressure, the flow rate in the channel is limited. This
maximum or critical flow rate is reached when the flow becomes unstable and the surfaces
collapse. At that state the flow characteristic changes from a steady single-phase to an
unsteady two-phase flow. Our hypothesis is (see Rosendahl et al. , 2003) that the collapse
of the surface occurs due to the effect of choking, which is known from compressible gas
flows and open channel flows under normal gravity. The characteristic number for this
effect is defined by the ratio of the mean liquid velocity and the speed of longitudinal
waves in open capillary channels. This number tends towards unity in the case of choking
at the smallest cross section in the channel. The aim is to predict the critical velocity
and the corresponding maximum flow rate as well as the innermost contour lines of the
free surfaces for steady flows.

This study presents quantitative data achieved experimentally under reduced gravity
conditions on board the sounding rocket TEXUS-37. During the six minutes of a ballis-
tic flight the volume flux has been increased up to the critical value for which the flow
becomes unstable and the liquid surfaces collapse. This paper provides the typical video
observations of the steady and unsteady flow as well as the evaluated innermost contour
lines of the free surfaces, especially the position of the smallest cross section and the max-
imum velocity as function of the adjusted volume flux for the steady regime. Also the
maximum flow rate is provided. All boundary conditions required for numerical calcula-
tions are given. Open capillary channels are used in a number of applications in space
liquid management, e.g. in heat pipes and in surface tension tanks of satellites. However,
in spite of the high number of applications the flow through open capillary channels and
the related effect of flow rate limitation are not well understood and rarely discussed in
the literature. Besides experimental data from drop tower and sounding rocket exper-
iments provided by Rosendahl et al. (2002) and Rosendahl et al. (2003), only a few
one-dimensional steady numerical model computations performed by Jaekle (1991), Srini-
vasan (2003) and Rosendahl et al. (2003) exist. Admittedly one-dimensional assumptions
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(a) (b) (c)
Figure 1: (a) Liquid flow through an open capillary channel consisting of two parallel plates. Due to flow
losses the free surfaces along the flow path x′ bend inwards. (b) The symmetry plane y′ = 0 and (c) cross
sectional area for x′ = const. All values have dimensions.

are not well fulfilled at the inflow and outflow region. For this reason quantitative steady
three-dimensional numerical results are desirable as well as time-dependent computations
to understand the process of the collapsing flow in detail. The main numerical difficulty
is the interaction of a three-dimensional flow with a free surface, which is - above a crit-
ical value - additionally an unsteady two-phase flow. As far as our experience goes the
determination of the critical volume flux and the quantitative steady contours of the free
surfaces is difficult. In the case of viscous dominated flows and time-dependent flows the
free surface is no longer pinned at the edges of the channel and moves inwards between
the plates. This results in a moving contact line problem. The time-dependent bubble
formation at the end of the channel is an interesting challenge too.

2 Definitions and model description

A flow through an open capillary channel as shown in figure 1(a) is considered under
low gravity conditions. The channel consists of two parallel plates of distance a, breath
b and length l. The flow enters the channel via an inlet with a closed circumference,
passes the open section (free surface flow) and leaves it at the outlet (likewise with a
closed circumference). The volumetric flow rate Q′ is created by external pumps (note
that primes are used to denote dimensional variables). The inlet is connected with a
liquid reservoir through a nozzle (see 3.1). The reservoir is connected to a compensation
tube which applies a known pressure (lower than ambient pressure) to the system. The
head losses in the nozzle decrease the pressure even further and determine the boundary
condition at the inlet. Due to convective and frictional momentum transport in the open
channel the pressure decreases in flow direction and the curvature increases (figure 1(b)).
The liquid surfaces are bend inwards at any cross-sectional area of the flow path (figure
1(c)).

We assume an isothermal flow along the channel axis x′ characterized by the velocity
u′(x′, y′, z′) = (u′x, u

′
y, u
′
z) and the liquid pressure p′(x′, y′, z′). The origin of the coordinate

system is located in the center of the inlet cross section of the free surface channel. For the
analysis all lengths are scaled by half the plates distance a/2, except for the cross section
A which is scaled by A0 = ab (all relevant values are listed in table 1). The velocities are
scaled by

v0 =
√

4σ
ρDh

, (1)

where σ is the surface tension, ρ the density and Dh = 2a the hydraulic diameter of



Test-case number 35 by A. Ohlhoff, U. Rosendahl and M. Dreyer 3/12

the channel. This velocity is known from the self-driven inflow of liquid into a capillary
parallel plate channel (capillary rise) reported by Dreyer et al. (1994). With equation
(1) the dimensionless volume flux reads Q = Q′/(A0v0) and the liquid pressure p = p′/p0

with p0 = 2σ/a. In the following, all values are dimensionless.

The capillary pressure p−pa is related to the curvature of the free surface by the normal
stress balance (assuming zero normal velocities at the free surface and a passive overlaying
gas), generally denoted as Gauss-Laplace equation (Landau & Lifschitz, 1991)

p− pa = −
(

1
R1

+
1
R2

)
= −κ. (2)

Herein R1 and R2 are the principal radii of curvature of the liquid surface, κ is the
sum of the curvatures and pa denotes the ambient pressure.

The scaling yields three dimensionless parameters which are the dimensionless channel
length L = 2l/a, the aspect ratio Λ = b/a and the Ohnesorge number. The Ohnesorge

number is defined by

Oh =

√
ρν2

σDh
=

2
Re0

with Re0 =
Dhv0

ν
, (3)

where ν denotes the kinematic viscosity. Note that the Ohnesorge number is inversely
proportional to the Reynolds number based on the characteristic velocity from equation
(1).

To obtain symmetric conditions at the free surface concerning the plane y = 0 and
z = 0 the hydrostatic pressure caused by an acceleration g = (gx, gy, gz) is required to
be negligibly small compared to the capillary pressure. This holds for sufficiently small
Bond numbers in all directions, given by

Box =
ρgxal

2σ
� 1,Boy =

ρgya
2

2σ
� 1,Boz =

ρgzab

2σ
� 1. (4)

3 The Experimental Test Case

3.1 Experimental setup and procedure

The experimental setup and procedures are explained in detail in Rosendahl et al.
(2003). Therefore just a brief overview is given below. The experiment was carried out
under microgravity conditions on board the sounding rocket TEXUS-37. During the
ballistic flight the rocket provides an all axis low gravity environment of 10−4g0 (with g0

the gravitational acceleration on earth) for six minutes. With the properties of the test
liquid the maximum Bond number is Bo = 5.6·10−3 which satisfies the requirements of (4).

The schematic drawing of the experiment is shown in figure 2. Note that for the
sake of clearness all technical details necessary for establishing the capillary channel flow
under microgravity are omitted. The core element of the setup consists of a cylindrical
liquid reservoir (no. 1) with a compensation tube (no. 2) and an observation chamber
(no. 3) with the open channel. Via a nozzle (no. 4) the channel is connected to the liquid
reservoir. The flow through the channel is established by two gear pumps. One pump
supplies the reservoir with the volume flux Q1 through a circular gap on the bottom of
the reservoir covered by a screen. The second pump withdraws a volume flux Q2 via the
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Liquid properties Characteristic numbers Scaling values
ρ = 766 kg/m3 Oh = 0.00152 a/2 = 2.5 mm
σ = 15.8·10−3 N/m Λ = 5.0 A0 = 125 mm2

ν = 0.69·10−6 m2/s L = 18.66 v0 = 90.8 mm/s
γs = 0◦ p0 = 6.32 Pa

Table 1: Liquid properties for the test liquid DOW Corning SF 0.65 at T = 20◦C, characteristic numbers
and scaling values of the problem.
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Figure 2: Schematic drawing of the experimental setup to investigate the open capillary channel flow on
board the sounding rocket TEXUS-37. All technical details for establishing the flow under microgravity
are omitted. The numbers denote: 1 liquid reservoir, 2 compensation tube, 3 observation chamber with
the open channel, 4 nozzle, 5 outlet. All properties are dimensionless. (a) The (x, y) plane and (b) the
(x, z) plane.

channel and the nozzle from the reservoir. The unavoidable difference of the volume fluxes
between both pumps caused by fluctuations of the rotation speed and varying liquid slip
inside the pump is compensated by the cylindrical compensation tube. For the numerical
calculation the difference may be neglected yielding Q1 = Q2 = Q. With this assumption
the position of the liquid meniscus inside the tube is fixed in the steady case. Since the
used silicone oil (DOW Corning SF 0.65, liquid properties are given in table 1) is perfectly
wetting the static contact angle on perspex and quartz glass is γs = 0. For this reason the
liquid surface in the compensation tube of perspex always has the shape of a spherical
calotte leading to a constant liquid pressure inside the tube. Note that liquid surfaces of
the channel and of the compensation tube are exposed to the same ambient gas pressure pa.

The capillary channel consists of two parallel quartz plates of (dimensionless) breadth
2Λ and distance 2. At the bottom end the plates are connected to the nozzle and to the
outlet at the upper end (see figure 2). Both the nozzle and the outlet have a closed cross
section so that the open section of the channel measures the length L. The nozzle was
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Reservoir Comp. tube Nozzle Open channel Outlet
D1 = 26.0 D3 = 18.0 L2 = 12.0 Λ = 5 L4 = 8.4
D2 = 38.0 L3 = 2.8 L = 18.66 L5 = 4.8
L1 = 30.0 L6 = 6.0 L7 = 3.6

Table 2: Geometric values of the experimental setup. All length are scaled with a/2 = 2.5 mm.

designed to achieve quasi one-dimensional flow conditions at the inlet of the open channel
section. It has a rectangular inlet cross section of 2L6 by 2Λ which constricts on the
length L2 to the channel cross section (2 by 2Λ). Note that all these dimensionless values
are listed in table 2. In the (x, y)-plane the nozzle has an elliptical shape (see figure 2(a))
which corresponds to a quarter section of an ellipse between the principal axis 2L2 and
2(L6 − 1). Downstream of the nozzle the channel cross section remains unchanged on
the length L3 before the flow enters the open section. With this form the lateral velocity
components in the entrance cross section of the open channel were minimized to 2%
of the longitudinal components. Concerning the longitudinal velocity distribution the
flow is characterized by a constant core flow with small boundary layers at the sides.
As shown in figure 2(b) the outlet cross section remains constant at first (length L4),
then it constricts on the length L5 to a rectangular orifice of 2 by L7. The reservoir is a
cylindrical container with diameter D2 and height L1. The circular gap at the bottom is
defined by the diameter D1 and D2. The compensation tube has a diameter of D3.

The capillary channel was observed by two CCD cameras. On the front side of the
upper plate precise markings for the calibration and evaluation of the video images are
etched. As shown in figure 3(a) the views had an overlap around the middle markings
(approximately 10 mm). Due to total reflection at the gas-liquid interfaces the liquid
surfaces appear as dark zones on the video images. Referring to figure 3(c) these zones
are the projection of the distance Λ− kL and Λ− kR into the image plane. The positions
kL(x) and kR(x) correspond to the left and right hand side innermost contour lines of the
surfaces, respectively.

During the experiment the volume flux Q was increased in small increments up to the
critical value Qcrit at which the surfaces collapse and the ingestion of gas bubbles sets
in. At any adjusted volume flux Q < Qcrit yielding a steady flow both contour lines were
detected by digital image processing and averaged in time. Finally for the comparison with
the numerical calculations the mean innermost contour position k = 0.5(kL(x)−kR(x)) as
function of Q is provided.

3.2 Test case parameter and boundary conditions

For the determination of the boundary condition at the channel inlet, it is necessary
to compute the complete flow in the liquid reservoir and the nozzle. The pressure in
the compensation tube is given by the curvature of its free surface. The flow in the
outlet section has an effect and should be modeled too. The geometric data of the
channel, the nozzle, the liquid reservoir, the compensation tube and the outlet are listed
in table 2. Also the properties of the test liquid DOW Corning SF 0.65 are given in table 1.

The boundary conditions of the problem will be given in dimensionless form. In figure
2 all thick solid lines are walls Γw with no-slip condition:

u = 0 on Γw. (5)
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Figure 3: (a) Front view of the channel during the steady phase of the flow (Q < Qcrit). The optical
axes of the cameras are aligned perpendicularly to the top plate. At the inlet and outlet the plates are
covered by thin coated metal plates at the sides (1), which are depicted in detail in figure (b) (the fluid
is drawing in gray). Due to total reflection the liquid surfaces (2) appear dark. The innermost surface
positions correspond to the distances kL and kR in figure (c).

In case of steady flow, the liquid reservoir is supplied via the circular gap with the
same volume flux Q, which is withdraw at the channel outlet. Because the inflow Γin has
an area of Ain = 30.16, we obtain

u = (ux, 0, 0) on Γin with ux =
Q

Ain
=

Q

30.16
, (6)

whereby the volume flux is different for the different contour shapes and given in the
results section. At the end of the free surface channel at x = L we have

Q =
∫ 1

−1

∫ Λ

−Λ
uxdzdx. (7)

Additionally to these boundary conditions, the static pressure in the system is given
by the capillary pressure at the free surface Γc of the compensation tube. The free surface
is hemispherical with a static contact angle of γs = 0◦. According to equation (2) with
R1 = R2 = 9 we have

p− pa = 0.2222 on Γc. (8)

No flow occurs in the compensation tube in the case of a steady flow.

The free surface in the open channel has the following conditions: If z(x, y) is the 3d
free surface of our problem and k(x) = z(x, y = 0) the surface position in the symmetry
plane y = 0 (see figure 3(c)) (note, that because of the symmetry with respect to the
(x, y)-plane, we only give the values for z(x, y) ≥ 0), the boundary conditions for the free
surface read

z(x = 0, y) = Λi and especially k(x = 0) = Λi (9)
z(x = l, y) = Λo and especially k(x = l) = Λo.

As shown in figure 3(b) the liquid wets the outer body of the inlet and outlet. To
have a good coincidence between measured and calculated surface shapes Λi = 5.076 and
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Λo = 5.11 have to be applied to equation (9). For a first computational approach the
choice of Λi = Λo = Λ = 5.0 is a good approximation. Note that the liquid surface is not
necessarily pinned at the edges of the plates, so that z(x, y = ±1) < Λ for any positions
0 < x < L. In case of unsteady flows the surface detaches form the edges and moves
in between the plates (see section 4). The same effect may also occur for steady flows
with large L. On the free surface Γf we have the kinematic and the dynamic boundary
condition. The first one requires that the fluid velocity at the free boundary is equal to
the velocity of the surface itself

u · n = ub on Γf, (10)

where n is the unit outer normal vector and ub is the normal velocity of the free surface.
In the stress balance we neglect normal and tangential stresses and the pressure difference
across the free surface is described by the Gauss-Laplace equation (2). Note that we have
no surface tension variations. As initial condition for the unsteady case one can use a
steady solution for Q < Qcrit or a plane surface with u = 0.

Summary of the required calculations
• The shape of the free surfaces in the symmetry plane y = 0 for different volume

fluxes Q < Qcrit.
• The maximum volume flux Qcrit.
• The position of the smallest cross section and the maximum mean velocity for dif-

ferent volume fluxes Q < Qcrit.
• Qualitative behavior of the shapes of the free surface in the symmetry plane y = 0

for volume fluxes Q > Qcrit at the times shown in figure 6.

4 Results

Figure 5 shows the flow for different volume fluxes with Q < Qcrit. Besides small
harmonic oscillation of the free surface caused by the pumps the flow is steady. The
surfaces are symmetrically with respect to the plane z = 0 and the mean contour line
k is constant in time. With increasing volume flux the curvature of the liquid surface
grows and the flow path constricts. At a certain volume flux the flow becomes unsteady
as shown in figure 6, which is slightly above the critical value. The surface collapses and
a periodic ingestion of gas bubbles is observed leading to a two phase flow suction-sided.
During the bubble formation, which is symmetrical, the surface stayed pinned at the edge
of the outlet. The experimental critical volume flux is Qcrit = 0.738 (Q′crit = 8.38 ml/s).

Figure 4 shows the steady mean surface positions k (innermost contour line) along the
channel axis x as a function of the adjusted volume flux Q. Due to insufficient contrast
the contour points near the inlet and outlet could not be detected. For this reason the
experimental contours in figure 4 and 7 do not meet the upper mentioned boundary con-
dition. The labels refer to the evaluated sequences given in table 4. The labels indicate
the chronological order in which the volume fluxes were adjusted during the experiment.
The comparison of the sequences S-04 and S-07 (both at Q = 0.689), as well as S-05, S-06
and S-12 (all at Q = 0.730) shows that the flow conditions are reproducible. l∗ denotes
the length from the channel inlet at x = 0 up to the smallest cross section. This location
of the flow path is of particular interest since the collapse of the liquid surface is initiated
here. Each change of volume flux causes a pressure disturbance which travels upstream
at a certain wave speed to change the inlet boundary condition. As shown by Rosendahl
et al. (2003) the wave speed decreases with increasing curvature of the liquid surface.
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Q′1 = 5.52 ml/s Q′2 = 7.37 ml/s Q′3 = 8.17 ml/s Q′4 = 8.38 ml/s
Q1 = 0.486 Q2 = 0.649 Q3 = 0.718 Q4 = 0.738

x k(x) k(x) k(x) k(x)
0.3732 5.0188 4.9318 4.9042 4.8987
0.7464 4.8971 4.8254 4.7879 4.7789
1.1196 4.8393 4.7566 4.7100 4.6984
1.4928 4.8136 4.7185 4.6642 4.6511
1.8660 4.7932 4.6915 4.6310 4.6169
2.2392 4.7829 4.6743 4.6092 4.5937
2.6124 4.7751 4.6622 4.5927 4.5754
2.9856 4.7711 4.6537 4.5817 4.5627
3.3588 4.7671 4.6473 4.5720 4.5536
3.7320 4.7645 4.6431 4.5660 4.5459
4.1052 4.7620 4.6380 4.5590 4.5361
4.4784 4.7604 4.6344 4.5530 4.5323
4.8516 4.7581 4.6308 4.5488 4.5258
5.2248 4.7561 4.6278 4.5436 4.5197
5.5980 4.7542 4.6245 4.5380 4.5142
5.9712 4.7528 4.6209 4.5325 4.5078
6.3444 4.7508 4.6175 4.5278 4.5020
6.7176 4.7492 4.6141 4.5229 4.4962
7.0908 4.7471 4.6104 4.5174 4.4895
7.4640 4.7452 4.6067 4.5127 4.4844
7.8372 4.7425 4.6030 4.5063 4.4787
8.2104 4.7410 4.5982 4.5007 4.4696
8.5836 4.7381 4.5954 4.4954 4.4643
8.9568 4.7359 4.5915 4.4898 4.4577
9.3300 4.7347 4.5876 4.4832 4.4500
9.7032 4.7341 4.5859 4.4787 4.4442
10.0764 4.7322 4.5828 4.4746 4.4388
10.4496 4.7297 4.5785 4.4689 4.4323
10.8228 4.7269 4.5741 4.4624 4.4252
11.1960 4.7239 4.5709 4.4554 4.4171
11.5692 4.7218 4.5655 4.4485 4.4071
11.9424 4.7196 4.5608 4.4411 4.3975
12.3156 4.7178 4.5560 4.4322 4.3853
12.6888 4.7132 4.5496 4.4228 4.3763
13.0620 4.7113 4.5466 4.4170 4.3674
13.4352 4.7102 4.5440 4.4108 4.3591
13.8084 4.7082 4.5396 4.4051 4.3522
14.1816 4.7068 4.5365 4.4000 4.3456
14.5548 4.7054 4.5343 4.3953 4.3390
14.9280 4.7050 4.5324 4.3922 4.3360
15.3012 4.7045 4.5312 4.3925 4.3362
15.6744 4.7047 4.5331 4.3962 4.3399
16.0476 4.7080 4.5383 4.4045 4.3518
16.4208 4.7125 4.5473 4.4207 4.3698
16.7940 4.7246 4.5650 4.4476 4.4029
17.1672 4.7462 4.5979 4.4920 4.4524
17.5404 4.7858 4.6514 4.5593 4.5231
17.9136 4.8546 4.7386 4.6695 4.6434
18.2868 4.9952 4.9056 4.8374 4.8170

Table 3: Evaluated mean surface position k from the experiment in dependence of the flow path x. Q1 is
the lowest and Q4 is the highest volume flux of the steady flow.
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Figure 4: Experimental determined mean surface position k(x) as function of the volume flux Q for the
TEXUS-experiment.

For this reason an increase of the volume flux increases the liquid velocity but decreases
the wave speed so that the speed of the pressure disturbance relative to the liquid flow
vanishes for the critical volume flux Qcrit at the smallest cross section. Since the upstream
boundary condition remains unchanged at that state gas is ingested into the outlet for the
sake of mass conservation. Table 4 provides the mean surface position k∗ and the mean
liquid velocity v∗ at the smallest cross section x = l∗ at steady flow conditions. In figure
7 four experimental contour lines of the steady flow are exemplified in detail. The error
of the contour evaluation is ∆k = ± 0.036. All contour data are given in table 3.
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Q = 0.486
Q′ = 5.52 ml/s

Q = 0.569
Q′ = 6.46 ml/s

Q = 0.649
Q′ = 7.39 ml/s

Q = 0.730
Q′ = 8.29 ml/s

Figure 5: Steady liquid flow in the open capillary channel at different volume fluxes below the critical
value, Q < Qcrit. The flow direction is from the bottom to the top. Due to the increasing pressure loss
the flow path narrows with increasing volume flux.

t′ = 197.02 s t′ = 197.22 s t′ = 197.46 s t′ = 197.66 s

t′ = 197.86 s t′ = 197.90 s t′ = 197.94 s t′ = 197.98 s

Figure 6: Typically unsteady liquid flow in the open capillary channel at a fixed volume flux above the
critical value, Q > Qcrit. The free surfaces collapse and a periodic ingestion of gas bubbles is observed.
The bubble formation occurs symmetrically as shown here.
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No. Q′ Q k′∗ k∗ l′∗ l∗ v′∗ v∗

[ml/s] [-] [mm] [-] [mm] [-] [mm/s] [-]
S-01 5.52 0.486 11.76 ± 0.09 4.704± 0.036 38.48 ± 0.25 15.39±0.1 46.0 ± 2.5 0.506±0.028
S-02 6.46 0.569 11.59 ± 0.09 4.636±0.036 38.82 ± 0.25 15.53±0.1 54.4 ± 3.0 0.598±0.033
S-03 7.39 0.649 11.33 ± 0.09 4.532±0.036 38.04 ± 0.25 15.22±0.1 63.1 ± 3.5 0.694±0.039
S-04 7.82 0.689 11.18 ± 0.09 4.472±0.036 38.03 ± 0.25 15.21±0.1 67.7 ± 3.8 0.745±0.042
S-05 8.29 0.730 10.93 ± 0.09 4.372±0.036 37.54 ± 0.25 15.02±0.1 72.9 ± 4.1 0.802±0.045
S-06 8.29 0.730 10.93 ± 0.09 4.372±0.036 37.54 ± 0.25 15.02±0.1 72.9 ± 4.1 0.802±0.045
S-07 7.82 0.689 11.20 ± 0.09 4.480±0.036 38.03 ± 0.25 15.21±0.1 67.5 ± 3.8 0.743±0.042
S-08 7.87 0.694 11.17 ± 0.09 4.468±0.036 37.20 ± 0.25 14.88±0.1 68.1 ± 3.8 0.750±0.042
S-09 8.10 0.713 11.07 ± 0.09 4.428±0.036 37.64 ± 0.25 15.06±0.1 70.5 ± 4.0 0.776±0.044
S-10 8.15 0.718 11.00 ± 0.09 4.400±0.036 37.59 ± 0.25 15.04±0.1 71.3 ± 4.0 0.785±0.044
S-11 8.19 0.721 10.98 ± 0.09 4.392±0.036 38.03 ± 0.25 15.21±0.1 71.7 ± 4.0 0.789±0.044
S-12 8.29 0.730 10.93 ± 0.09 4.372±0.036 37.69 ± 0.25 15.08±0.1 72.9 ± 4.1 0.802±0.045
S-13 8.34 0.735 10.92 ± 0.09 4.368±0.036 37.49 ± 0.25 15.00±0.1 73.4 ± 4.1 0.808±0.045
S-14 8.38 0.738 10.87 ± 0.09 4.348±0.036 37.74 ± 0.25 15.10±0.1 74.0 ± 4.2 0.815±0.046

Table 4: Evaluated data from the experiment on board of TEXUS-37 in temporal order: volume flux Q,
mean surface position k∗ and mean fluid velocity v∗ at the smallest cross section x = l∗.
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Figure 7: Evaluated mean surface position k(x) from the experiment (solid lines) at different steady
volume fluxes: (a) Q = 0.486 (S-01), (b) Q = 0.649 (S-03), (c) Q = 0.718 (S-10), (d) Q = 0.738 (S-14).
The error of the contour data is displayed by dotted lines.
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